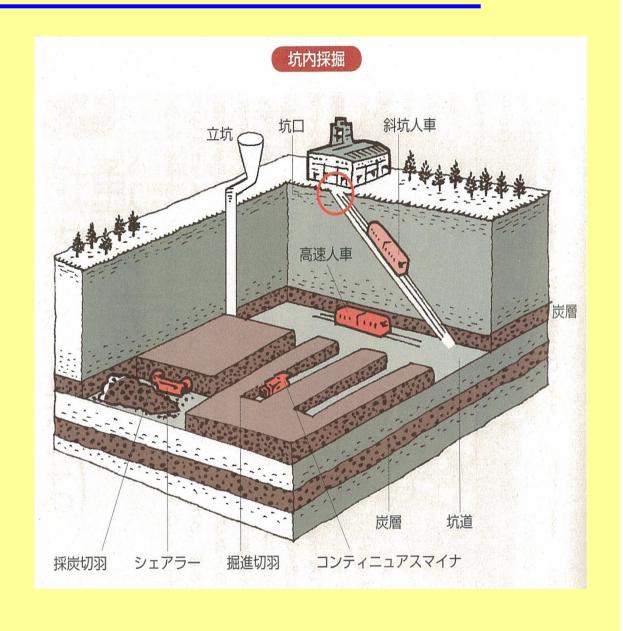

5. 石炭利用技術の新展開 ~今、何故石炭か?~

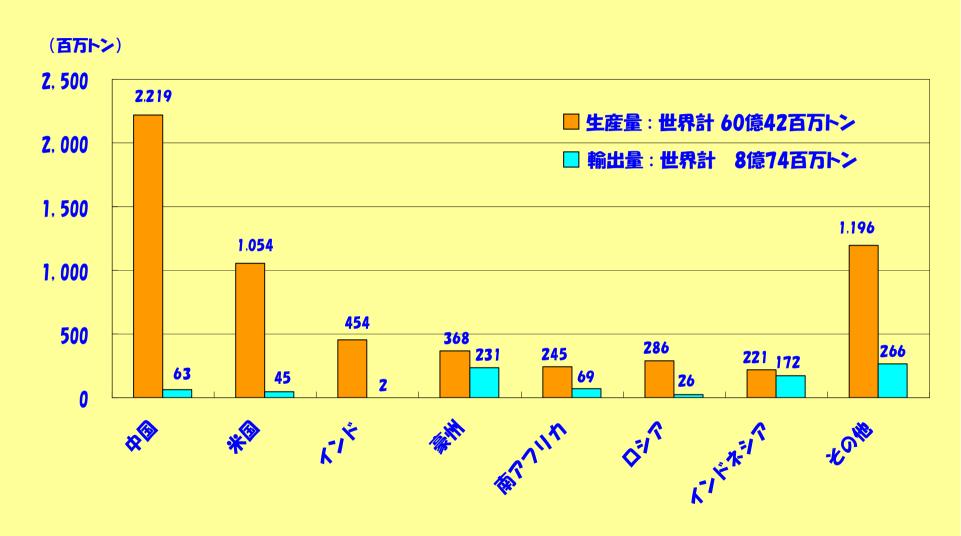
つづき

坑内掘り



大正時代の大正時代の炭鉱(石炭を掘っている場所)

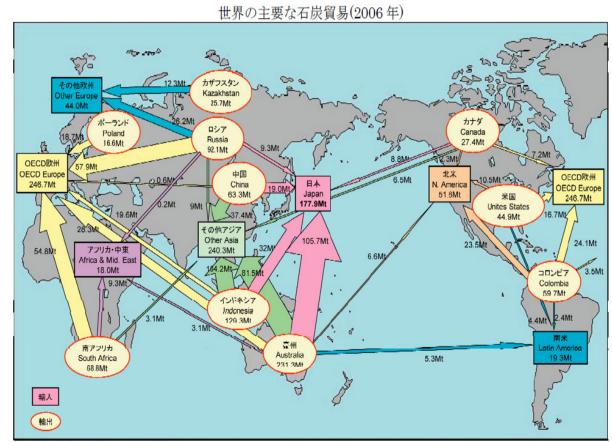
坑内採炭機械


シールド: 天盤を支えてシェアラーを押し出す機械、シェアラー: ピックを回転させて石炭を掘り出す機械

坑内掘りには安全確保(落盤・出水・自然発火対策)が不可欠

主要産炭国の石炭生産量・輸出量

IEA Energy Statistics 2006 より作成

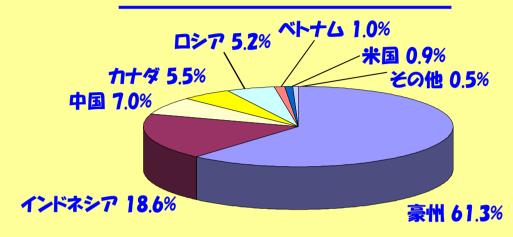

世界の石炭貿易(2006年)

■ 我が国は世界最大の石炭輸入国であり、年間約1.8億トン(世界の石炭貿易量の約4分の1に相当)を輸入

主な石炭輸入国の輸入量

順位	国名	輸入量 [百万トン]	割 <mark>合</mark> [%]
第1位	中日	177. 9	22
第2位	韓国	79. 7	10
第3位	台湾	63. 5	8
第4位	北米	51.6	6
第5位	英国	51. 2	6
合 計	世界	814. 8	100

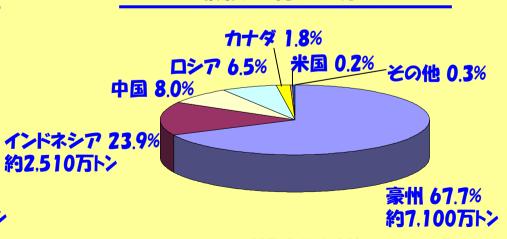
(注)石炭はHard Coal (無煙炭、瀝青炭、 一部の亜瀝青炭) 2006年の数値。 (出所)OECD/IEA「Coal Information 2007」


(出所) IEA "Coal Information 2007"

(注) 石炭は Hard Coal (無煙炭、瀝青炭、一部の亜瀝青炭)。

AIST

国別輸入炭入着量(平成18年分)


無煙炭 (588万トン)

原料炭 (8.073万トン)

中国 2.7% 米国 1.7% ロシア 3.4% その他 0.9% カナダ 10.6% 豪州 56.8% 約2.000万トン 約4.600万トン

一般炭 (1億505万トン)

財務省貿易統計をもとに作成

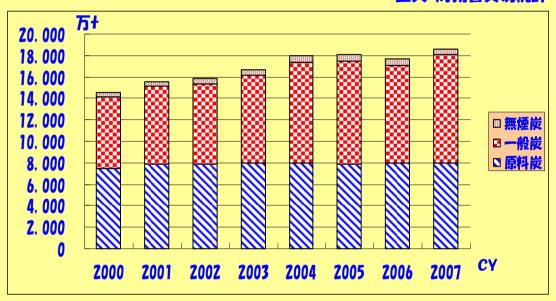
□雷気業

□窯業土石

□その他

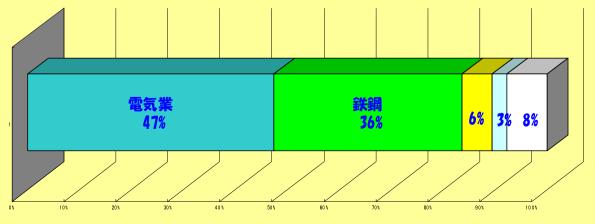
□紙・パルプ

■ 鉄鋼

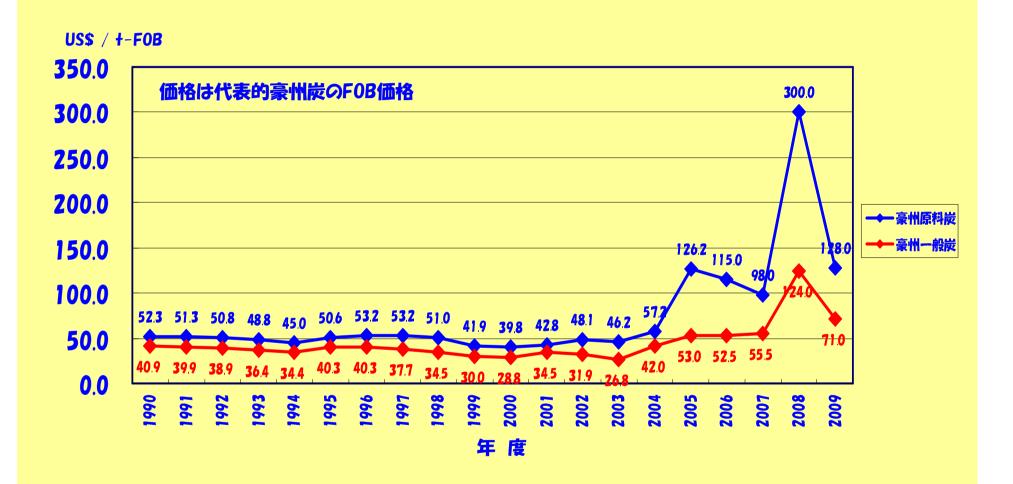

我が国の石炭需要

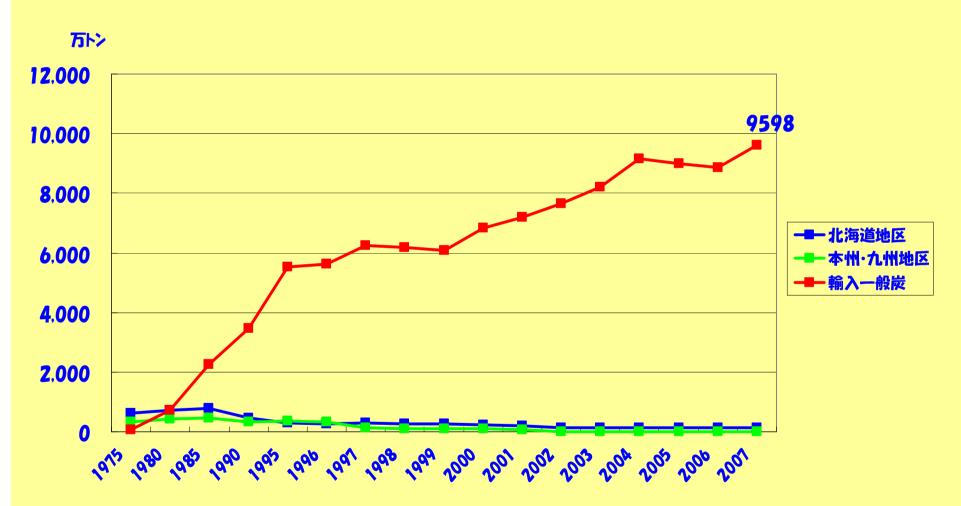
2007年の石炭(一般炭・原科炭・無煙炭)輸入数量 : 1億8600万+(前年比5%増)

電力需要を中心に堅調に推移

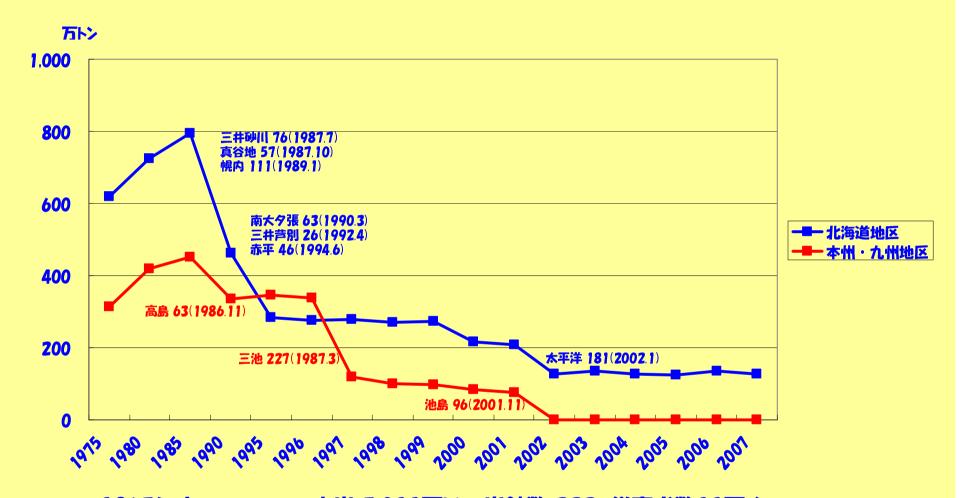

(参考1)近年の石炭輸入量推移

出典:財務省貿易統計




日本向け石炭輸出契約価格の推移

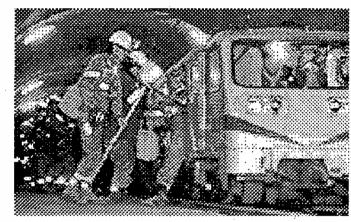
資工庁エネルギー白書 2008 と最新のニュース記事(例えば、J-CAST モバイルニュース等)をもとに作成


輸入炭(一般炭)の輸入量推移と国内炭(一般炭)地域別生産推移

コール/ート2008から作成

国内炭(一般炭)地域別生産推移

1965年度(昭和40年度): 出炭 5,011万トン、炭鉱数 222、従事者数11万人1975年度(昭和50年度): 出炭 1,860万トン、炭鉱数 35、従事者数 2万人


太平洋炭砿が「最後」の採炭 釧路

asahi.com&4

2002年(平成14年)1月30日

今月30日に閉山する予定の北海道釧路市の太平洋炭砿(池田隆之社長)で9日朝、同社としては最後の採炭作業をする一番方の333人が入坑した。夕方には昇坑し、81年にわたって約1億トンを掘り出した石炭採掘の歴史に幕が下りる。採炭事業はこの春から、地元企業が設立した新会社「釧路コールマイン」が引き継ぐ。

海底を掘り進んだ同砿の現在の採炭現場は沖 合約8キロ、海面下736メートル。坑内員らは午 前6時から3班に分かれ、人車に乗り込んだ。

採炭現場へ移動する人車に乗り込む炭鉱員たち=9日午前7時30 分、北海道釧路市の太平洋炭砿で

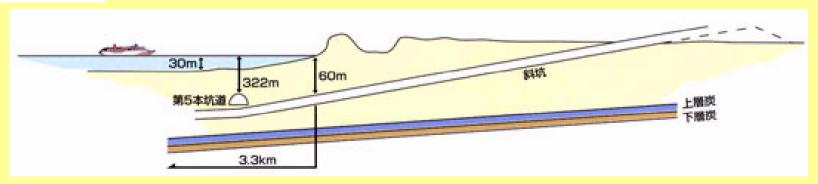
今後、採炭機械が撤収され、深部の坑道の密閉作業が行われる。ただ、新会社が 4月から比較的浅い別の坑道で本格的に採炭を始める計画で、その準備として坑 道掘進も続けられる。(12:29)

2002/01/09 http://www.asahi.com/national/update/0109/015.html

釧路コールマイン株式会社

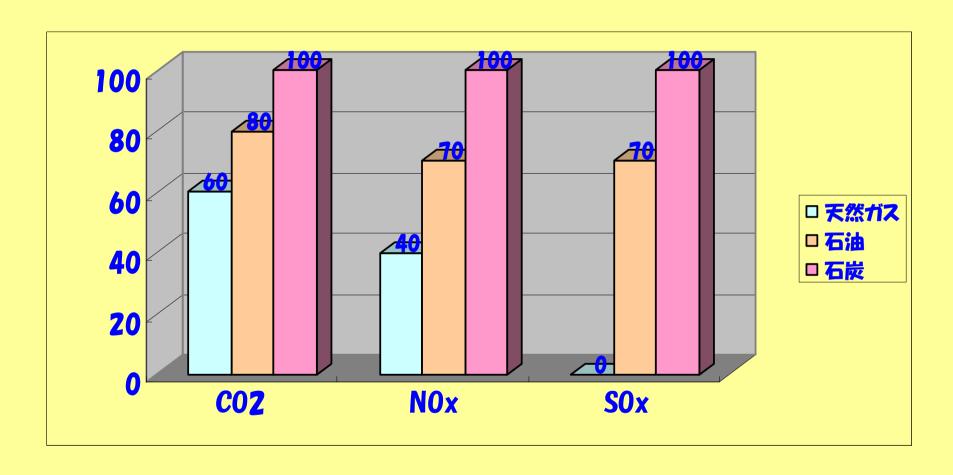
KUSHIRO COAL MINE CO., LTD.

- 1) 採掘及び販売事業(生産量=年間約55万トン)
- 2) 研修事業(産炭国石炭産業高度化事業)等



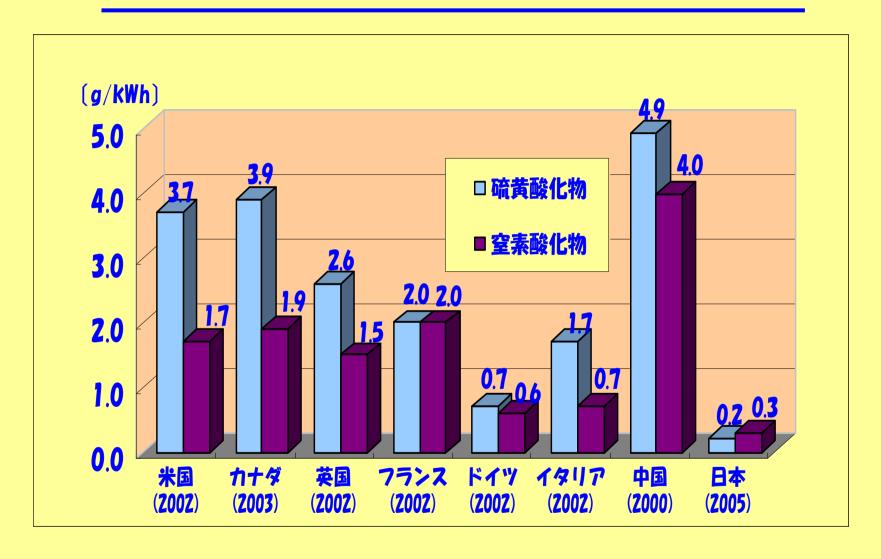
知人貯炭場

2007.2 釧路コールマイン入坑時

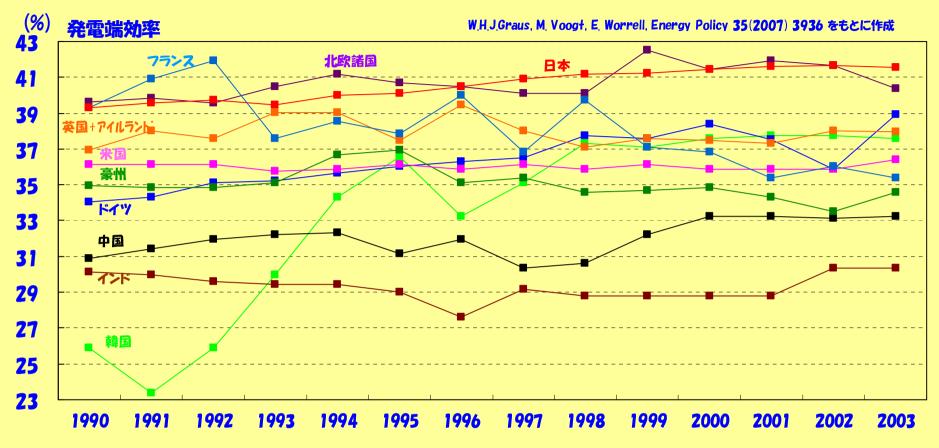


· 質問:

石炭は、石油や天然ガスに比べてCO2、NOx、SOxを多く排出し、ケリーンな燃料ではないといわれています。それぞれの燃料を利用したときのCO2、NOx、SOxの排出量は、例えば石炭を基準(100)にするとどのくらいだと思いますか?


二酸化炭素等の排出量相対比較(石炭基準:100)

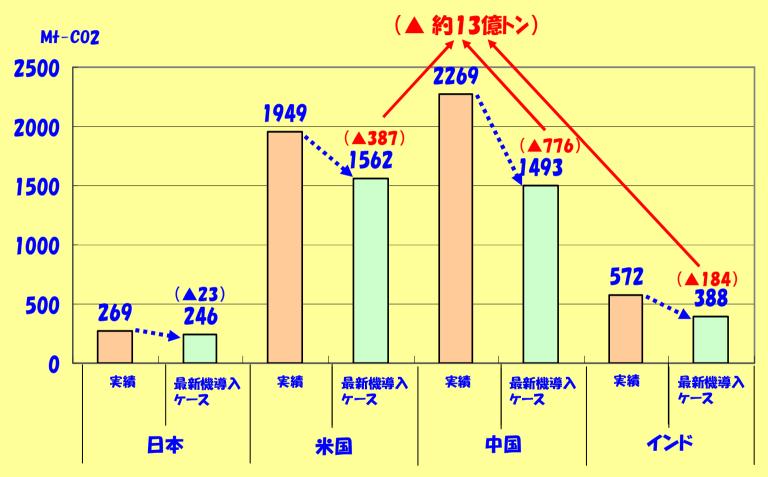
石炭は石油、天然ガスに比べ「クリーンでない」。しかしそれを全く利用しないというオプションではなく、効率的にクリーンに利用するクリーン・コール・テクノロジー(CCT)の推進が重要ではないか。


SOx, NOx発生量の各国比較

出典: OECD Environmental Data Compendium 2004, Energy Balances of OECD Countries 2002-2003, 日本のデータ: 電気事業連合会調べ

石炭火力発電の熱効率の国際比較

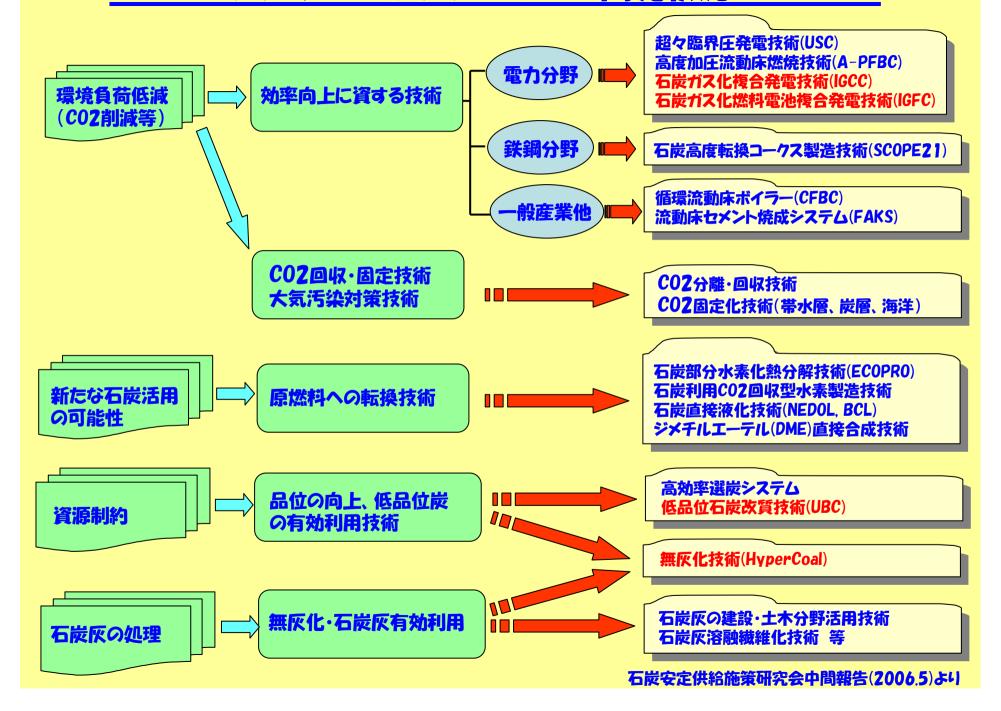
各国の石炭火力発電所の発電効率(2003年)比較


	効率 (%)	比較(日本を基準)
インド	30	0.71
中 国	33	0.79
米 国	36	0.86
ドイツ	39	0.93
日本	42	1.00

日本の石炭火力発電効率を主要国に適用した場合の効果 AIST

石炭火力発電からのC02排出量(2004年)

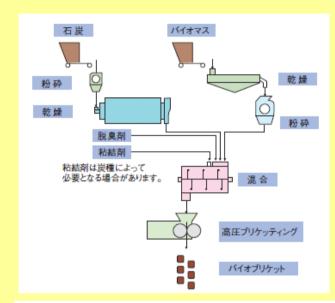
最新機導入ケース:日本の商業中発電所の最高効率を適用した場合

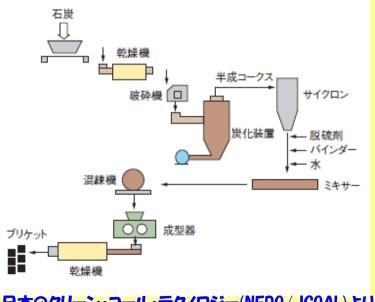

日本で運転中の最新式の石炭火力発電の効率を米国、中国、インドの 石炭火力発電に適用するとC02削減効果は約13億トン これは、日本一国のCO2排出量に相当

石炭利用技術の新展開 - 改質・利用技術/高効率発電技術-

クリーンコールテクノロジーの開発状況

石炭改質·利用技術(I)




バイオ・プリケット

バイオブリケットは、石炭に木材バガス(サ トウキビの絞りかす)、わら、トウモロコシ の茎などの植物質(バイオマス 25%と石炭中の硫黄量に応じた脱硫剤 (Ca(OH)2)を添加、混合し高圧で成型し た固形燃料。

乾留プリケット

- 製造工程は、乾留工程と成型工程からな
- に成型した後、乾燥・冷却

日本のクリーン・コール・テクノロジー(NEDO/JCOAL)より

石炭改質·利用技術(II)

コールカートリッジシステム(CCS)

- 石炭を微粉炭にし、密閉系の粉体輸送システムによって、石炭のハンドリングを改善した石炭利用システム。
- 年間の石炭使用量が数万トン規模の、独自で海外炭を安定輸入することが難しい中・小口需要家を対象として、海外炭をまとめて輸入し、各々の需要家に適した品質に混炭し、微粉炭にして供給。

石炭液体混合燃料(CWM, COM)

- 石炭は固体であるため、液体に比べハンドリングが複雑なこと、粉塵に対する環境対策が必要なこと、貯炭場などの広い用地を要する等の問題があり、石炭をケリーンで重油並に利用する手段として、石炭スラリーが注目。
- 水と混合したCWM(Coal Water Mixture)の ほか、石炭に重油を加えてスラリー化したCO M(Coal Oil Mixture)を製造。

CCS炭の特性

	銘柄	基準	Α	В	С
原原	 提展 炭		3種	3種	2種
全7	k分 Wt%	AR	2.9	2.8	2.7
発熱	热量 kcal/kg	*	6490	6480	6490
_	水分 Wt%	dry	0.0	0.0	0.0
工業分	灰分 Wt%	dry	12.1	12.4	12.1
分	揮発分 Wt%	dry	39.6	39.5	35.6
析	固定炭素 Wt%	dry	48.3	48.1	50.3
燃料	料比		1.22	1.22	1.41
	炭素 Wt%	daf	80.30	80.00	82.00
一元	水素 Wt%	daf	5.80	5.80	5.90
元素分析	窒素 Wt%	daf	1.60	1.50	1.50
分析	酸素 Wt%	daf	11.80	12.40	10.50
471	硫黄 Wt%	daf	0.48	0.47	0.45
全研	全硫黄 Wt% dry		0.45	0.43	0.41
粒质	粒度 -200mesh dry		84.5	78.9	83.50

表-1 高濃度CWMの特性

Coal Water Mixture (CWM

衣-1 高濃度UWIMの特性				
N.	石炭濃度(wt%)	68~70		
ĺ	高位発熱量(kcal/kg)	5,000~5,200		
	低位発熱量(kcal/kg)	4,600~4,800		
	見掛粘度(mPa·s)	1,000		
	比重(一)	1.25		
	灰分(wt%)	6.0		
	硫黄(wt%)	0.2		
	200メッシュ以下の粒子(%)	80~85		